The two faces of ToxR: activator of ompU, co-regulator of toxT in Vibrio cholerae.

نویسندگان

  • Sarah J Morgan
  • Suleyman Felek
  • Shilpa Gadwal
  • Nicole M Koropatkin
  • Jeffrey W Perry
  • Alyson B Bryson
  • Eric S Krukonis
چکیده

ToxR of Vibrio cholerae directly activates the ompU promoter, but requires a second activator, TcpP to activate the toxT promoter. ompU encodes a porin, while toxT encodes the transcription factor, ToxT, which activates V. cholerae virulence genes including cholera toxin and the toxin co-regulated pilus. Using an ompU-sacB transcriptional fusion, toxR mutant alleles were identified that encode ToxR molecules defective for ompU promoter activation. Many toxR mutants defective for ompU activation affected residues involved in DNA binding. Mutants defective for ompU activation were also tested for activation of the toxT promoter. ToxR-F69A and ToxR-V71A, both in the α-loop of ToxR, were preferentially defective for ompU activation, with ToxR-V71A nearly completely defective. Six mutants from the ompU-sacB selection showed more dramatic defects in toxT activation than ompU activation. All but one of the affected residues map to the wing domain of the winged helix-turn-helix of ToxR. Some ToxR mutants preferentially affecting toxT activation had partial DNA-binding defects, and one mutant, ToxR-P101L, had altered interactions with TcpP. These data suggest that while certain residues in the α-loop of ToxR are utilized to activate the ompU promoter, the wing domain of ToxR contributes to both promoter binding and ToxR/TcpP interaction facilitating toxT activation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The virulence regulatory protein ToxR mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species.

The transmembrane regulatory protein ToxR is required for expression of virulence factors in the human diarrheal pathogen Vibrio cholerae, including cholera toxin (CT) and the toxin coregulated pilus (TCP). ToxR is necessary for transcription of the gene encoding a second regulatory protein, ToxT, which is the direct transcriptional activator of CT and TCP genes. However, ToxR, independent of T...

متن کامل

Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae.

ToxR is a bitopic membrane protein that controls virulence gene expression in Vibrio cholerae. Its cytoplasmic domain is homologous to the winged helix-turn-helix ('winged helix') DNA-binding/transcription activation domain found in a variety of prokaryotic and eukaryotic regulators, whereas its periplasmic domain is of ill-defined function. Several genes in V. cholerae are regulated by ToxR, b...

متن کامل

The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter.

ToxR is required in Vibrio cholerae for transcriptional activation of the toxT gene, the protein product of which activates numerous genes involved in virulence. Although ToxR cannot activate the toxT promoter in Escherichia coli, the products of the tcpPH operon are shown here to activate the toxT promoter, and co-expression with ToxRS enhances activation. An identical pattern was seen in a De...

متن کامل

Vibrio parahaemolyticus toxRS operon (VP0819-VP0820) regulates outer membrane proteins OmpU and OmpN that are important for survival in acid stress

Introduction One of the main regulators of virulence in Vibrio cholerae is the two-component regulator ToxRS. In V. cholerae, ToxR binds to the promoter and activates the toxT gene, which in turn activates the expression of a number of virulence genes, such as ctxA and tcpA (DiRita et al. 1991). Additonally, ToxR has also been shown to regulate the two outer membrane porins, OmpU and OmpT in a ...

متن کامل

The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU.

It was previously demonstrated that the intestinal pathogen Vibrio cholerae could undergo an adaptive stress response known as the acid tolerance response (ATR). The ATR is subdivided into two branches, inorganic ATR and organic ATR. The transcriptional regulator ToxR, while not involved in inorganic ATR, is required for organic ATR in a ToxT-independent manner. Herein, we investigate the effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 81 1  شماره 

صفحات  -

تاریخ انتشار 2011